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A B S T R A C T   

Related experiments have shown that transcranial direct current stimulation (tDCS) anodal stimulation of the 
brain’s primary motor cortex (M1) and supplementary motor area (SMA) can improve the motor control and 
clinical manifestations of stroke patients with aphasia and dyskinesia. In this study, to explore the different 
effects of tDCS on the M1 and SMA in motor imagery, 35 healthy volunteers participated in a double-blind 
randomized controlled experiment. Five subjects underwent sham stimulation (control), 15 subjects under-
went tDCS anode stimulation of the M1, and the remaining 15 subjects underwent tDCS anode stimulation of the 
SMA. The electroencephalogram data of the subjects’ left- and right-hand motor imagery under different stim-
ulation paradigms were recorded. We used a functional brain network and sample entropy to examine the 
different complexities and functional connectivities in subjects undergoing sham-tDCS and the two stimulation 
paradigms. The results show that tDCS anodal stimulation of the SMA produces less obvious differences in the 
motor preparation phase, while tDCS anodal stimulation of the M1 produces significant differences during the 
motor imaging task execution phase. The effect of tDCS on the motor area of the brain is significant, especially in 
the M1.   

1. Introduction 

Transcranial direct current stimulation (tDCS) has proven to be an 
effective tool for regulating cognitive function and brain plasticity [1]. 
During tDCS, the current is transmitted from the anode to the cathode 
through the electrode pad placed on the scalp at an intensity of 1–2 mA 
[1]. As a non-invasive brain stimulation technology, tDCS has attracted 
much attention because of its potential clinical applications [2]. In 
recent years, there has been increased research on improving cognition 
and learning abilities using tDCS [3]. 

Multiple brain regions, such as the primary motor cortex (M1), 
premotor cortex, supplementary motor area (SMA), and cerebellum, 
have been proven to be related to actual motion. The application of tDCS 
to the M1 has been proven to increase cortical excitability [4] and 
change plasticity, thereby improving nerve function and motor control 
[5]. Some brain imaging studies have shown that motor skill learning is 
also related to brain regions other than the M1, including the SMA [6]. 
There is effective connectivity between the SMA and M1 [7]. tDCS over 

the SMA causes excitability changes in the neural structure responsible 
for pre-motor preparation [8]. This discovery shows that SMA excit-
ability can be modulated externally by tDCS to change motor function in 
subjects. 

However, most research on tDCS of the M1 and SMA focuses on 
analyzing behavioral data [9] (e.g., improving manual dexterity in 
sports tasks [10], accuracy of gripping force [11], reaction time [12], 
and posture control [13]). These studies lack an in-depth analysis of 
functional connectivity in the brain. Complex brain functions, such as 
coordinated movement, memory, and language production, rely heavily 
on dynamic interactions between brain regions [14]. Non-invasive 
neuromodulators affect the brain network as a whole and do not 
singularly target the local stimulation site [15]; therefore, we can 
explore the effect of different electrical stimulation experiments by 
analyzing the connectivity and complexity of the brain network before 
and after stimulation. Some experiments have shown that in stroke pa-
tients treated with tDCS, the connectivity of the stimulated ipsilateral 
motor neural network at the alpha frequency of the 
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electroencephalogram (EEG) is closely related to changes in cortico-
spinal excitability [16]. This indicates that functional connectivity is a 
powerful and specific response biomarker [16]. By analyzing the con-
nectivity of the subjects’ cerebral cortex in the tDCS experiment, the 
effect of tDCS can be effectively evaluated. 

Motor imagery is an internal representation of a movement that does 
not involve actual movements in behavior. Because of its beneficial ef-
fects in sports rehabilitation training, research on motor imagery has 
gradually increased. In some experiments of left-right hand motor im-
agery, applying tDCS to the motor area can lead to changes in the 
connection between cortical areas [17]. This study explored the 
different effects of tDCS on brain network connectivity and complexity 
in the M1 and SMA in motor imagery experiments. 

2. Methodology 

2.1. Overview 

Fig. 1 shows the overview of the methods used in this study. This 
study mainly used functional brain networks and sample entropy 
(SampEn) methods to explore the different effects of tDCS on the sub-
jects’ M1 and SMA. First, the pre-processed EEG signal was used to 
calculate the phase synchronization index (PSI) to estimate the corre-
lation between each channel pair to obtain a correlation matrix, as 
shown in Fig. 1(d). An appropriate threshold (T) was selected to obtain a 
binary matrix. Further processing of the binary matrix produced a brain 
network topology map, the average clustering coefficient Fig. 1(c), 
shortest path length (L), and small-world attributes that characterize 
brain network features, as shown in Fig. 1(e). In contrast, the pre- 
processed signal features were extracted using SampEn, which was 
used for the construction of brain topographic maps, as shown in Fig. 1 
(g). 

2.2. Experimental procedure 

Thirty-five right-handed subjects, including 21 men and 14 women, 
with an average age of 24 ± 2 years, were included in this experiment. 
Before the experiment, the subjects were informed in detail about the 
experimental procedure and possible conditions and provided a signed 
informed consent form. We conducted a physical examination of the 
subjects to ensure the safety of the experiment. The survey showed that 
all the subjects were healthy, had normal vision (with corrective lenses), 
and had no history of mental illness or other major diseases. 

The experimental process was divided into three parts: tDCS, motor 
imagery task execution, and EEG signal acquisition. A double-blind 
control experiment was performed for the tDCS. Five subjects under-
went sham stimulation (control), 15 subjects underwent tDCS anode 
stimulation of the M1, and the remaining 15 subjects underwent tDCS 
anode stimulation of the SMA. 

2.2.1. TDCS paradigms 
Paradigm 1: The anode was placed over the right M1 (C4), and the 

cathode was placed on the upper side of the left orbit (FP1). 
Paradigm 2: The anode was placed over the right SMA (FC2), and the 

cathode was placed over the upper side of the FP1. 
Electrical stimulation was provided at 1 mA. The duration of the 

stimulation experiment was 20 min. The electrical stimulation experi-
ments were performed at a fixed time of 9:00 am every day for 3 
consecutive days. 

2.2.2. Motor imagery task execution 
The experimental process is shown in Fig. 2. Before the start of the 

experiment, the subjects were required to stare at a cross mark displayed 
on the screen, which was followed by the preparation phase, lasting for a 
total of 10 s with a corresponding indicator number appearing every 1 s 
to remind the subjects. The next step was the execution phase of the 
motor imagery task. This stage lasted for 20 s with upward and 

Fig. 1. Schematic diagram of data processing.  
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downward arrows displayed on the screen, representing imagining 
making a fist with the left and right hands, respectively. The visualiza-
tion of each movement lasted 10 s. The subjects repeated the experiment 
four times, separated by 1-min breaks. 

2.2.3. EEG data acquisition and pre-processing 
EEG signals were collected in the above preparation and M1 task 

phases at 9:00 am on the fourth day. The stimulation parameters and 
sequence of all the subjects during the experiment were the same. All the 
subjects had no adverse reactions after the completion of the experi-
mental data collection. During data collection, the subjects were 
required to sit in front of a computer, look at the screen, and perform the 
corresponding motor imagery task, according to the instructions dis-
played on the screen. 

Data from 35 subjects were recorded. Data from each subject was 
collected twice in one experiment and 70 pieces of subject data were 
obtained. A portable wireless EEG amplifier (NeuSen.W64, Neuracle, 
China) was used for data recording. Electrical stimulation was applied 
using a StarStim device (Neuroelectrics, Spain). The EEGLAB [18] 
toolbox in MATLAB (version 2018a; MathWorks) was used to 
pre-process the EEG signals; the details are shown in Fig. 1(c). 

2.3. Data analysis method 

2.3.1. Phase synchronization index 
The synchronization algorithm based on the Hilbert transform has 

been widely used in the correlation analysis between multi-channel EEG 
signals [19]. For a single-channel EEG signalx(t), the analytical signal 
can be defined as 

Z(t) = x(t) + j̃x(t) = Ax(t)ejϕx(t) (2-1) 

The PSI of this study was defined as: 

PSI =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
< cosΦH

xy(t)>
2
t + < sinΦH

xy(t)>
2
t

√
(2-2)  

where Φxy(t) = ϕx(t) − ϕy(t) represents the phase difference between 
the two signals. IfPSI = 0,x(t) and y(t) are not synchronized, and ifPSI =

1, then the two signals are completely synchronized. 

2.3.2. Sample entropy 
An EEG is a nonstationary random signal with typical nonlinear 

characteristics. Compared with linear models, nonlinear models can 
better reflect the essence of brain activity; therefore, it is necessary to 
further explore the effect of tDCS on brain electrical activity from the 
perspective of the nonlinear dynamics of the EEG. In this study, the 
SampEn complexity calculation method was used to analyze the effect of 
tDCS on the nonlinear characteristics of the EEG. 

2.3.3. Statistical analysis 
In this study, paired t-test and double factor analysis of variance were 

used to test the significance of the difference between sham-tDCS and 
paradigms 1 and 2. Statistical analyses were performed using SPSS 
software, version 25 (IBM). 

2.4. Network analysis 

Fig. 3 shows the correlation matrix constructed using the PSI of the 
EEG signals for sham-tDCS, paradigm 1, and paradigm 2 in the motor 
preparation phase and the left- and right-hand motor imagery phases. 
Blue (PSI = 0) to red (PSI = 1) indicate the lowest and highest correla-
tions, respectively. Sham-tDCS and the two stimulus paradigms showed 
significant differences in the correlation matrix between the movement 
preparation and left-right hand motor imagery stages. During the exer-
cise preparation phase, paradigm 2 demonstrated greater synchroniza-
tion than that observed with sham-tDCS and paradigm 1. The 
synchronization in paradigm 1 in the execution phase of left-right hand 
motor imagery tasks, however, was significantly greater than that in 
sham-tDCS and paradigm 2. In summary, tDCS over the SMA led to 
greater synchronization than that over the M1 during exercise prepa-
ration, while tDCS over the M1 led to greater synchronization than that 
over the SMA during exercise task execution. 

Regarding the selection of the threshold (T), there is currently no 
unified method [20]. In this study, the multi-threshold method was used 
to examine changes in network parameters in different experiments. The 
overall range of T was 0.1–0.75, and the unit step increment was 0.02. A 
correlation matrix composed of the PSI was converted into an un-
weighted graph for each subject for each T. The “small-world” (S) 
characteristics of each unweighted graph were then calculated with the 
clustering coefficient (C) and feature path length (L). 

Some studies have found that complex networks have higher C and 
shorter L [21], which means that the S attributes are stronger. Fig. 4(a) 
shows the change in the ratio of C and L with T and that the overall C/L 
decreases with an increase in the threshold. For smaller thresholds, 
almost all nodes are connected by edges, and the ratio of clustering 
coefficient to feature path length changes minimally with an increase in 
the threshold. As T increases, the connection between the nodes in the 
network gradually decreases, resulting in a smaller C and increased L. 
Thus, the C/L value decreases with the increasing threshold. 

Fig. 4(a) shows that in the preparation phase, the C/L value of 
paradigm 2 is the largest when T > 0.4, and the difference between 
paradigms 1 and 2 is small. In the left-right handed execution stage, 
when the value of C/L changes, the C/L value of paradigm 1 remains the 
largest. Then, the difference between paradigms 1 and 2 is obvious. 

Fig. 4(b) shows that the S attribute change curve leads to a similar 
conclusion. Since S for the brain network is <1 when the threshold value 
is >0.5, it does not have the characteristics of a small world and is not 
shown in the figure. 

In addition, we constructed a binary matrix by selecting a fixed 
threshold (T = 0.55). To visually characterize the connection of brain 
regions, we drew a network topology diagram corresponding to the bi-
nary matrix, as shown in Fig. 5. The brain network topology map was 
drawn using the MATLAB toolbox BrainNetViewer [22]. The groups of 
graphs in Fig. 5 show similar organizational structures, but the func-
tional networks after sham-tDCS and the two stimulus paradigms show 
different regional connectivity. 

Fig. 2. Experimental process.  
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2.5. Complexity analysis 

In recent years, studies have found that electromagnetic stimulation 
can cause changes in the nonlinear characteristics of the brain electrical 
signals of healthy subjects [23], proving that the nonlinear state of the 

brain may change with external electrical stimulation. This study used 
SampEn to estimate the regional complexity of EEG signals (Fig. 6). The 
significance analysis is presented in Table 1. 

Fig. 3. Correlation matrix constructed using the PSI.  

Fig. 4. Brain function network characteristics. * significant difference between the sham stimulus and the two stimulus paradigms (double factor analysis of 
variance, p < 0.05). 
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3. Discussion 

In this study, we used functional brain network analysis to study the 
different effects of tDCS of the M1 and SMA. 

The correlation between the EEG signal pathways is shown in Fig. 3. 
The graph shows that in the exercise preparation phase, the EEG signals 
in paradigm 2 have a higher correlation. This indicates that in the ex-
ercise preparation phase, anodic tDCS over the SMA improves the cor-
relation in subjects’ EEG signals better than anodic tDCS over the M1. 
This supports the conclusions of previous studies [24], showing that the 
SMA is highly involved in the plan execution phase of autonomous 
movement [25] and that the application of electric current to the SMA 
can stimulate the cortical excitability of the corresponding area [26]. 
Existing evidence shows that complex networks have higher clustering 
coefficients and shorter feature path lengths [27] or “small world” at-
tributes. This feature makes the network more efficient for the trans-
mission and processing of information. Vecchio et al. [28] found that 
after being stimulated with bipolar anodal tDCS, the brain network 
exhibited a “small world” attribute, and the main motor area and related 
motor areas showed changes in cortical function. We also reached 

similar conclusions. In Fig. 4, we can see that the brain network after 
SMA stimulation during the motor preparation phase has a higher “small 
world” attribute than that after sham-tDCS and M1 stimulation. This 
shows that the electrical connectivity of the brain can be improved by 
applying electrical stimulation to the SMA. 

In contrast, when performing left-right hand motor imagery tasks, 
we observed that paradigm 1 exhibited a higher EEG correlation than 
sham-tDCS and paradigm 2. Stimulation of the M1 with both anodes 
improved the motor imagery correlation of the EEG channels. Fig. 4 also 
shows that the “small world” attribute value of the brain after anodal 
stimulation of the M1 was higher during the execution of the motor 
imagery task than before anodal stimulation of the SMA. The brain 
network topology diagram in Fig. 5 shows that the brain regions after 
anodal stimulation of M1 are relatively tightly connected. However, 
SMA stimulation did not lead to a significant difference in left- and right- 
hand motor imagery tasks between subjects. This also shows that the 
subjects will only show obvious connectivity changes after tDCS of the 
SMA in the early preparation stage of autonomous movement, while the 
subjects after tDCS of the M1 will show obvious connectivity throughout 
the autonomous exercise execution stage. 

Fig. 5. Topological diagram of the binary matrix.  
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We found different phenomena when we further calculated the 
complexity of the EEG signals using SampEn. Overall, the two stimulus 
paradigms can increase the complexity of the subjects’ EEG signals, 
especially during the exercise preparation stage. However, in the 
execution stage of the motor imagery task, the increase in complexity 
was not obvious, and there was no significant difference in the increase 
in complexity during the right-hand motor imagery task (paradigm 
1 = 0.060; paradigm 2 = 0.385). This is slightly different from the 
conclusions we obtained from the brain network analysis. Studies have 
shown that complexity increases when the subject is in a state of tension 
or alertness [29]. Since the screen continuously reminds the subject to 
prepare based on the countdown number displayed during the exercise 
preparation stage, we suggest that the subject has entered a state of 
alertness at this stage, resulting in higher complexity. The complexity 
did not change significantly in the control group. 

The number of subjects who underwent sham stimulation was rela-
tively smaller than that of subjects who underwent tDCS of the M1 and 
SMA. To eliminate bias, the number of subjects must be increased. In 

addition, the subjects recruited in this study were all young people, and 
their age distribution was not representative. 

4. Conclusion 

In this study, the graph theory was used to construct a functional 
brain network to obtain the network features. Through analysis of the 
network features, we found that the effect of tDCS on the SMA was more 
obvious in the motor preparation stage, but not throughout the entire 
motor imagery task execution stage. The effect of tDCS on the M1 is 
opposite. The effect of tDCS is more obvious in the execution of the 
entire motor imagery task, but not in the motor preparation stage. 
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